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RELATIONSHIP BETWEEN TURBULENT AND KINETIC ENERGY IN A MIXED SUBSTANCE 

V. E. Neuvazhaev UDC 523,,526.517.4 

A simple semi-empirical model of turbulent mixing is used to calculate the eddy kinetic 
energy of a mixed zone and to compare this value with the kinetic energy of the zone. The 
latter is determined by the effect of acceleration, which induces motion in the corresponding 
substance. This problem was examined in [i] on the basis of the model in [2]. Below, we 
use the approximate approach developed in [3, 4]. We compare our results with the results 
obtained in [i] and explain the differences - particularly for the case of impulsive accumu- 
lation. Data for impulsive acceleration is compared with experimental results in [5] and 
satisfactory agreement is established. This agreement could be improved if the method used 
to analyze the empirical data is chosen so as to be consistent with the theoretical method. 

Formulation of the Problem. We will examine the problem of the mixing of two incom- 
pressible fluids of different densities located in a gravitational field. The direction of 
the field is such as to induce an instability which leads to turbulent mixing of the sub- 
stances. Mikaelian [I] used the diffusion model in [2] to calculate the relation between the 
change in potential energy due to turbulent mixing and the kinetic energy acquired by a mixed 
substance as a result of acceleration. 

We calculate the change in potential energy which is due to mixing of the substance 
within the interval x2 ! x ~ xi: 

A~=go (p~--p).d~+ (p~--p).d~. (1) 

Here go is acceleration; p is the density of the mixture; P2 and Pl are the densities of the 
light and heavy fluids; x = 0 is the position of the interface at the initial moment when the 
fluids are not yet mixed. 

We used a notation different than that employed in [i] for the change in potential 
energy, in that E t is taken to mean the turbulence energy due to the characteristic turbulent 
velocity v. Following [I] in designating the kinetic energy of the mixed substance as Ed, we 
can determine this quantity as 
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E a = ( I / 2 )  gd t  t pdx" ( 2 )  
~2 

The ratio A~/E d was calculated in [i] with the assumption that the profile of density 
p depends linearly on x. This value was then refined with allowance for the specific density 
profiles corresponding to the chosen diffusion model - which coincided with the model in [2]. 

A special case is impulsive acceleration, which corresponds roughly to the passage of a 
shock wave through the interface. Mikaelian [i] used a model which leads to a linear in 
crease in the size of the mixing zone over time. However, this is valid only near the be- 
ginning of acceleration. As was shown in [3, 4], the width of the mixing zone will increase 
over time in accordance with the law t 2/7. This finding was made on the assumption that some 
of the turbulence energy is converted to heat. Allowing for this fact, below we calculate 
the ratio AH/E d for both constant and impulsive acceleration. We based our calculations on 
the ~v-model developed in [6]. Here, we made use of the approximate approach in [7], which 
leads to simple analytical relations. 

The main idea underlying the study [7] is that characteristic turbulent velocity v in 
the mixing region is assumed to be independent of the space variable. After averaging over 
the mixing region, the balance equation that we constructed for v takes the form 

d~/2d~ q- k~2/~ : gAl(2~l] / '  ~--), d~ : aL~dt; ( 3 )  

fl = (P - -  P2)/(Pl - -  P2) = 0,5 (i --~ ~(N)), L = 4~1V T, ( 4 )  

= x/2T ~ k = 0,25 + v/16N~a 2 + A2/24, A = (Px - -  P2)~(P~' + P2), ~h = 2 / V ~ ,  

r = ! exp ( -  dn 
0 

( a  and  ~ a r e  c o n s t a n t s  c h o s e n  on t h e  b a s i s  o f  c o m p a r i s o n  w i t h  e x p e r i m e n t a l  r e s u l t s :  ~ = 0 . 2 8 7 ,  
= 1 6 q ~ 2 ) .  T h i s  c h o i c e  e n s u r e s  a g r e e m e n t  w i t h  t h e  r e s u l t s  i n  [ 8 ,  9]  f o r  a c o n s t a n t  a c c e l -  

e r a t i o n  L = 0 . 1 4  A g 0 t  2 and  a " 2 / 7 "  l aw.  S t r i c t l y  s p e a k i n g ,  t h e  c o n s t a n t  0 . 1 4  s h o u l d  h a v e  
b e e n  r e c a l c u l a t e d ,  w i t h  t h e  w i d t h  o f  t h e  m i x i n g  r e g i o n  i n  t h e  e x p e r i m e n t  b e i n g  d e t e r m i n e d  n o t  
o v e r  t h e  f r o n t  b u t  i n t e g r a l l y  by  means  o f  t h e  f o r m u l a  

L = 2 (fr/]~ (0)) dx + ([2/12 (0)) dx . ( 5 )  
0 

However, we did not do this because it would have led to only a slight reduction in the con- 
stant 0.14. 

The right side of Eq. (3) is the source of turbulent mixing. In the case of an impulsive 
acceleration law, it is always taken with a + sign. The second term in the left side charac- 
terizes the dissipation of turbulence energy. More precisely, the conversion of turbulence 
energy into heat is determined by the second and third terms in the coefficient k. If these 
terms are excluded, then the potential energy will be equal to the kinetic energy associated 
with turbulent mixing. 

Constant Acceleration. In the model being used here, the volume concentration fl - 
characterizing the distribution of density - is independent of the Atwood number A. Figure 1 
compares it with the concentration obtained in [i] [line 1 - Eq. (4), lines 2 and 3 - from 
[i] with A = 0.i and i, line 4 - Eq. (5)]. The solution for eddy kinetic energy and the 
width of the mixing zone has the form 

~2 = g o A L / ( 2 ~  (1 + 4k)) = 0,065g0AL/(l + 0,028A2), ( 6 )  

L = 8~a~goAt~(l  + 4k) = O, t4goAt2/(l + 0,028A~). 

The change in:potential energy A~ and kinetic energy E d are calculated from Eqs. (I) and 
(2) with the use of the expression for density (4). We finally obtain 

AH/E  d = LA/4~2go t~ = 0 ; 0 2 7 5 A ~ ( 1 + 0 , 0 2 8  A~), ( 7 )  

where the change in potential energy AH is found from Eq. (I) with the assumption that -~ < 
x < ~. With allowance for (6), we determine the fraction of eddy kinetic energy as 

Et/Ed = ~ /g~t  2 = 0,0092A2/(1 + 0,028A2)% ( 8 )  
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Relations (7) and (8) are shown in Fig. 2 (line i is from [i], line 2 is from Eq. (7)) in 
comparison with the results from [I]. There is a significant difference between the energy 
ratios in (7) (with A = i, (7) = 0.0267, while in [I] (7) = 0.014), this difference being due 
mainly to different profiles of volume concentration. In making the comparison, we combined 
the mixing fronts (see Fig. i). If Mikaelian [I] had done as we did and replaced the profile 
by a straight line in order to conserve the mass of the mixed substance, then his results 
(line 3 in Fig. 2) would have been appreciably closer to ours. It is better to make such 
comparisons with experiments in which the density profile is measured [8, 9] and the approx- 
imation of the initial data is less regular. The ratio AH/E d from [i] was found with al- 
lowance for the fact that the mixing width in [I] and here are related by the formula L = 
(5/8)L3, where L is the width determined from Eq. (5). With the use of the model in [2], 
both this formula and the analytical expression for AH/E d are obtained in the appendix for 
the case of small A. 

Impulsive Acceleration. Equation (3) can have a nontrivial solution only in the pres- 
ence of initial roughness (L 0 ~ 0) [i0]. In this case, the solution of the equations in the 
previous section takes the form 

"v~" = ~ (~) (L~/L)% ( 9 ) 
L = L 1 [ 1 + 8q2t~ (1 2f. k) L'I (~) (t - -  to)/L 1 ] l / ( l+2h)  ( 1 0 )  

Here ,  ~z(8)  i s  t h e  eddy v e l o c i t y  i m p a r t e d  by t h e  shock wave; ~ i s  a d i m e n s i o n l e s s  p a r a m e t e r  
determined below; t o is the time of passage of the shock wave across the boundary, eroded to 
the width L 0. Here, we write E t and E d as 

Et 0,25v~(8)(p,+v2) ~ , Ed = 0 ,2 5 U~ ( o ,+ p 2 )  L 
t o 

(u0 ~ g d t : i s  t h e  v e l o c i t y  a c q u i r e d  by t h e  boundary  due t o  i m p u l s i v e  a c c e l e r a t i o n ) .  T h e i r  
0 

r a t i o  i s  
EdEn  = (v: (~)/g~o) (L~/L) 'a. ( 11 ) 

I t  s hou l d  be n o t e d  t h a t ,  a t  k = 0 . 2 5 ,  t h e  eddy k i n e t i c  e n e r g y  t r a n s m i t t e d  by t h e  shock 
wave w i l l  remain  c o n s t a n t .  In  t h e  ca se  o f  t h e  " 2 / 7 "  law, 4k = 5, and e n e r g y  d i s s i p a t i o n  t a k e s  
p l a c e  w i t h  t h e  exponen t  5. The v a l u e  o f  vz2(~)/U 2 i s  found  w i t h i n  t h e  i n t e r v a l  [4a2A2/(1 + 
4k) 2, 4a2A2]. We r e p r e s e n t  t h e  s o l u t i o n  in  t h e  form 

~ ([J)/g2o = (O,065AL~/(~Lo)) [ t - -  (Loins)6], (12)  
/ l + 10,2a2~A, :if  ~A<0 ,24 ,  

L J L ~  = [ (0,924 + i,23r V ~ )  2, ! i f .  ~ A ~  0,2~, 

where ~ = U0t0/L 0 . The leftmost value in the interval indicated above is realized at large ~. 

Let us examine Eq. (ii) with L = LI: Et/E d = v~($)/U02. This relation has a quadratic 
dependence on A, while its coefficient can vary (i + 4k) 2 = 36 times at the extreme values 
of the parameter ~: 

E t / E  a = (0,01 --  0,37) A 2. '(z3) 
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Other values of ~ correspond to a more complex law determined in accordance with Eq. (ii). 
For comparison, the case 8 = i is shown in Fig. 3 with L = L I (line i shows results from 
[i]; lines 2-4 correspond to $ = 0, ~, and I). 

Impulsive Acceleration. Comparison with Experiments in [5, II]. Zaitsev et al. [5] 
measured the dependence of the dimensionless quantity (dL/dt)/U 0 on A and established that a 
linear relation of the following form holds when the first shock wave crosses the interface 

(dL1/dt)/Uo = 0,02 -F, 0,068(0,070)[A I (14) 

After the second wave - when the eroded region of the boundary is i0 mm wide - the coeffi- 
cient with the Atwood number increases by approximately one order: 

(dL2/dt)/U o = 0,05 -~ 1,15(0,85)IAI. (15) 

The number in the parentheses shows the value of the coefficient with the motion of the 
shock wave from the heavier medium to the lighter medium. 

Let us compare these results with the theoretical conclusions in the previous section. 
To do this, we will follow the approach we used in deriving Eqs. (14) and (15) and examine 
Eq. (ii) with L = L I [having inserted this equation into (12)]. In order to find the rela- 
tionship between the (14) and (15), we take the square root of both sides of (I0). We then have 

]/" (E~/Ed) (L = L~) = ~1 (~)/Uo = (dL/dt)/(  U o 8 ~ ) .  (16) 

Here, we used the equation dL/dt = 8q~v I, which follows from the formulas in the first sec- 
tion. Thus, it follows from a comparison of (12) and (16) that (dL/dt)/U 0 = 8~=vi(8). 

Figure 4 compares theoretical relations (lines) with experimental results [5] (circles). 
The latter are within the limits established by the theory, the only exception being the first 
shock wave. The film turned out to have a substantial effect when this wave passed. 

Appendix. Analytical Representation of the Solution with Small Values of A. The profile 

of volume concentration has the form [2] 

fl = 0,5 -~ i5~sna -- 5(~L3) a + 6(x/La) 5, (17) 

where it is assumed that mixing is symmetric at small h. Thus,-L3/2 ~ x ~ L3/2. Calculation 
of the ratio AH/E d leads to the expression 

AH/Ea = LaA/(14~E). (18) 

We use Eq. (5) to change over to the width L determined from the mass conservation law 
for the mixture. By substituting Eqs. (17) and (18) L = (5/8)L~ is obtained. With allowance 
for the latter equation, Eq. (18) takes the form AH/E d = 0.016 A 2. This formula is valid for 

small values of A. 

i. 

8 

3. 
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TURBULENT FLOW AND HEAT TRANSFER OF A CHEMICALLY REACTING GAS MIXTURE 

IN A CHANNEL BEHIND AN ACCELERATING PISTON 

A. M. Bubenchikov and S. N. Kharlamov t~C 536.24 

This article examines the nonsteady turbulent motion of a recombining gas in a chamber 
behind an accelerating piston. The chamber is a section of a cylindrical tube bounded on the 
left by a stationary wall and on the right by the piston. The evacuated section of the chan- 
nel is located to the right of the piston. Before beginning motion, the partly dissociated 
gas - at a fairly high pressure - is uniformly distributed over the entire volume of the 
chamber, while the position of the piston is fixed. The piston is released at a certain 
moment of time taken as the initial moment and begins to accelerate toward the free end of 
the tube under the pressure of the hot gas. Expansion of the region occupied by the gas and 
the exchange of heat with the relatively cold wall of the channel lead to intensive recombi- 
nation in the flow. 

Our goal here is to construct a mathematical model of the given process and to study its 
gasdynamic features and criterional relations to determine parameters of the dynamic and 
thermal effects of the flow on the channel wall. 

To describe the gas flow in the present case, it is best to use the Reynolds equations 
in the "narrow channel" approximation [i]. Together with the energy equations for a two- 
component, chemically active mixture and the heat-conduction equation for the wall, these 
equations have the form 

0p a I 0 
o~ + ~ (P~) + 7 ~ (pvr) = O; ( 1 ) 

(Ou au au) ap t o /  ou , Op 
p - s  =--a- -7+-7~rp .z~-T) ,  ~ = 0 ;  (2) 

oh o~ dp [ ~  , 9 [  oh+ a~] 
+ "  + = + ko + - -  l ) A h  , p = ( t  + ( 3 )  

aT w t 0 I OTw~ 
d-F=o-F +u~ Pz=~+~t, az=a+qt, (4) 

where t is time; x and r are cylindrical coordinates; u and v are components of the velocity 
vector; p, h, and p are the density, enthalpy, and pressure; ~ and a are molecular viscosity 
and diffusivity; ~t and a t are the turbulence analogs of the transport coefficients; M and c 
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